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Abstract
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I INTRODUCTION

1 Introduction

The problem of the extraction of the optical flow has, in recent years, been treated from a new point

of view, that is. through the use of space-time filters [7,4,6.5). The basic idea behind this method

is to extract the optical flow without having to perform any type of operation other than to use a

collection of filters which are tuned to different orientations in space-time (or equivalently in the

fiequency domain). Also, given that the outputs of these filters have been computed. it is necessary

to establish a method by which we can determine the value of the estimated optical flow, because

the output of a filter tuned to a specific orientation (even if with maximal response) is not enough to

extract the optical flow and we have to use a complete set of filters (in the sense that it takes into

account all possible orientations). In space-time filtering, we convolve a sequence of images with a

(space-time) filter, such that the interval between sucessive images is small. The minimum temporal

interval between sucessive images is basically dictated by practical considerations, because if it is too

small we get litie amount of information about the moving pattern from frame to frame. On the other

hand, we would like to know what the value of the maximum temporal interval between sucessive

images should be such that we continue to be able to use a filtering approach to the extraction of

optical flow

The answer to this question comes by considering the sampling issues involved in this filtering

process. As I will show in section 3, if there exists a certain degree of motion uncertainty, then

the maximum sampling interval, is fixed by this motion uncertainty. This means that there exists a

(non-linear) relationship between the motion uncertainty and the maximum sampling interval.

The procedure of using a collection of filters to extract optical flow corresponds, in a general

sense, to a signai processing approach, which is mainly concerned with the extraction of information

about the original signal, in the presence of noise It involves the conoruction of filters, if possible

optimal ones, parameter estimation and the analysis of sampling issues.

On the other band, in the feature based approach to the extraction of optical flow [31 it is necessary

to, previously to the actual comoutation of of the n..ics' flow, extract edges tzero crnssinw) .,.h
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have to be matched in sucessive frames. If the temporal interval between succesive images is large

and the number of edges to be matched between frames is not high. then a cotour-based approach

can be sucesfud in extracting the optical low. But. on the other hanL if the number of edges is

large. the amount of immatchings can lead to a high rate of error, and as a consequence of this to a

wrong estimation of the optical flow.

It is therefore important to be able to kzect moving features and exmrat their optical flow in

the presence of noisy data and imprecise measurements. Depending on the spatial complexity of

information available at each image, in the temporal sequence of images, it can be more reliable to

use a filtering approach, especially for the case in which the interval between these images is small

and there exits a high spatial content of information (which makes a feant matching approach highly

unstable).

In this paper we discuss, in section 2, the issue of extracting the optical flow through feature

or intensity based approaches versus space-time filtering, and preent the space-time DOG cascade

as an energy filter. In section 3 we analyse sampling issues which apply for uniformly translating

patterns in the presence of noise (motion uncertainty). Finally, we draw conclusions in section 4,

and make an analogy between the long and short-range processes of motion extraction in the human

visual system and the feature-based and space-time filtering methods in Computer Vision.

2 Space-time filtering

2.1 Extraction of the optical flow in intensity and feature-based approach

The extraction of the optical flow field from the intensity variations in the image plane has been treated

until very recently, in Computer Vision. as a feature or intensity-based problem. In the feature-based

approach we have to detect relevant features, such as edges, from a pair of sucessive images (in

a temporal sequence of images), and afterwards perform a matching of corresponding elements. so
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that, as a result of this procedure, we assign a specific value of the optical flow to the corresponding

el emens.

This method has to overcome two major problems:

1. The correspondence problem

2. The aperture problem.

The correspondence problem (11 addresses the question of how to assign the same identity for

elements which appear in temporal sucession of images. The correspondence, or matching, can be

computed in different ways, depending, in part, on the temporal interval between succesive images.

If this interval is small, the correspondence between features ca be performed through a set of local

operations over elements which are spatially close to each other. One of these operations [1,17]

consists in the minimization of the distance a set of elements takes to travel from one image to its

sucessive one. On the other hand, if this temporal interval is large, it is more likely that a more

global type of operation for the matching of features has to be implemented. In general, the matching

of corresponding elements in sucessive images can be unstable, due to noise in the image, and also

computationally expensive if the number of features to be matched is large.

In respect to the aperture problem. which states that it is not possible to measure both components

of the optical flow field given a small aperture in the image, we have to introduce additional contraints

into the model describing the extraction of optical flow, so as to make it possible to obtain the

full optical flow field. Actually, given a small aperture, we are only able to measure the normal

component (to the gradient of the intensity) of optical flow field, while its tangential component

remains undetermined. As one example of the solution to the aperture problem, we can mention the

area-based [21 formulation which assumes the use of a smoothness term, in addition to the intensity

continuity equation, represented by the sum of the squares of the spatial derivatives of the optical flow

field components. Another example is given by the contour-based [3] approach, where the contraint

is represented by the gradient in respect to the arc length along the intensity gradient of the optical
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flew field, in addition to the difference between the normal component of the optical flow and its

measured value.

Both, the c espondence and the aperture problem, involve in practice a certain amount of

arbitrariness in terms of having to choose a set of constraints which enable us to extract the full

optical flow. It is therefore desirable to be able to eliminate the necessity of having to cope with both

of these problems. The method of space-time filtering does this, in pan, by eliminating altogether the

necessity of the use of the conzpondene problem. In respect to the aperture problem the solution

given by Heeger [51 consists in modeling the image flow as (locally) puttly translational, so that

the optical flow is extracted by fitting a plane to the energy of the filter. This is equivalent to the

computation of both components of the optical flow field, because for translational motion the support

in the frequency domain is given by a plane whose orientation is a function of the velocity vector.

2.2 Space-time oriented filters

Space-time filtering consists, basically, in the convolution of a temporal sequence of images (closely

displaced) with a (space-time) filter. The most important aspect of space-time filtering lies in the fact

that, if we consider an uniformly translating pattern, we are able to select a specific velocity by using

(space-time) oriented filters [61.

Let us take the example of one-dimensional motion (in the x direction). If we analyse the picture

which is generated in space-time by an uniformly translating pattern (through a crss-section parallel

the x-t plane), then we can conclude that the orientation of the individual elements (like lines or

stripes) is intrinsically determined by the velocity of the pattern (the slope of a line in the EM plane

is equal to the velocity of the feature associated to it). A very interesting example of this kind of

relationship between (space-time) orientation and velocity is described by the epipolar plane images

(EPIs) created by Bolles and Baker [8] for the case of a camera moving (perpendicularly to the

direction of motion) in a static environment. There, at a given EPI, we are able to track the temporal

evolution of each image element (at a fixed height), and this is described by a straight line.
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Once we know that, for unifom translaion, the space-time evolution of image elements .s given

by straight lines, in oder to select a specific velocity (optical fow), we can use (space-time) oriented

filters [6.7]. A particularly imporant aspec of this analysis comes from the fact that. for an uniformly

translating patern. the support of the contrast function in the frequency domain is given by a plane

(or a line for the case of one-dimensional motion) [7,10] passing through the origin of the coordinate

system. In terms of space-time filtering, this means that. in order to select a specific velocity of an

uniformly translating pantem. we have to tune the filter to the orientation in the frequency domain

which gives the highest response.

The use of directionally selective (space-time) filters pose a limitation in the sense that they are

phase sensitive [6]. This means that, depending on the alignment between the space-time configuration

of moving patterns and the filter shape, we can get different results: the filtered output may oscillate

or vary between positive and negative values. A solution to this problem is given by computing the

energy (power spectrua) of the filter output. The energy of a convolved signal is independent of any

phase problem. and for the case of an uniformly translating pattern its output is constant.

If. for example, we compute the energy associated to a space-time Gabor filter [5] convolved with

an arbitrary function, then the final result will not oscilate or depend on any phase factor. This leads

to the concept of space-time oriented filters as energy filters, which, with the assumption of random

textured images and Parseval's theorem made it possible for Heeger [5) to, analytically, predict the

energy associated to a particular space-time oriented pattern.

2.3 Space-time Difference-of-Gaussian (DOG) cascade as an energy filter

Space-time filtering, either through energy filters or cascades, is primarily concerned with the pro-

cessing of a temporal sequence of images, such that the interval between successive images is small.

On one hand, the work of Heeger [5] showed us that it is possible to obtain a dense image flow
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map by using a collection of twelve space-time Gabor filters, each ued to a different direction in

space-time. The space-time Gabor filter is parametrized by three (gaussian) filter sizes (a., ay and

at,), in addition to the (three) sine or cosine space-ime frequencies (whose relative ratios correspond

to different oietations in space-time). It would be desirable to have a broader space-time tniing

capability, as, for example, in the case of the cascaded filters proposed by Fleet and Jepson [9]. They

proposed the construction of space-time oriented filters in terms of cascades of the CS filter. The CS

filter is defined as the difference of spatial gaussian which are each multiplied by a temporal expo-

nentially decaying function, corresponding to a temporal center (C)-suround (S) model, in analogy to

biological systems, plus, a temporal delay term emboddied in the S par. The space-time orientation

i obtained by convolving the CS filter with a sum of (space-time) Dirac distributions, each centered

at a specific location in space-time so that the result is a oriented pattern. The use of layered cascades

of the CS filter improves the orientation specificity of the filters, as shown by Fleet and Jepson [9].

In respect to its timing capabilities, these layered cascades of the CS filter, are able, in addition to

their specific orientation, to select features moving at high or low speed by adjusting the ratio of the

spatial or temporal filter sizes to one, respectively.

We would like to use a filter which exibits a wide range of space-time tuming and can also be used

to extract the image flow as an energy filter. The simplest fusion of these two aspects is exibited by

the space-time DOG filter, used in cascade. In fact, if we substitute the temporal exponential decay

term in the CS filter by a temporal gaussian, and eliminate the temporal delay, we get a space-time

DOG. The number of parameters of this filter is equ. 9, where 4 correspond to the center and

surround filter sizes (the spatial filter sizes are assumed to be equal), spatial and temporal offsets

make up 3 parameters, plus the center and surround multiplicative constants. The only reason for

not using the CS cascade filter of Fleet and Jepson directly as an energy filter comes from the fact

that the energy expression turns out to be more complex than that of the space-time DOG cascade

because it has a linear temporal exponential decay, whereas for the DOG filter the temporal decay is

gaussian, thus making it easier to perform the temporal integral in order to get the energy expression.

We should remind ourselves that the space-time DOG and Gabor filters are non-causal, as a

consequence of the Paley-Wiener theorem [12] which states that, if a temporal filterf(t) has a square
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iegrable Fourier transform I(w) and satisfies the relation

j i dw < o,1

then f(t) is causal. The CS filter, on the contrary, due to its linear exponential temporal decay, is a

causal filter.

The space-time DOG filter is given by the following expression

D=,y A.j*- (.% + y)(2~ a, 12 /(2,u2 ))

- Ap(-(xi + y2)/(2o',) - t 2/(2,4)), (2.2)

where a' (7) and Ac (As) are the center (surround) spatial and temporal filter sizes respectively, while

Ac and As am adjustable parmneters (used in the discrete version of the filter to tne the sum of all

elements of the mask to zero). Its Fourier transform is given by

b(k/w)2/ 2 al2))

- A,,eX(-(PC72/2+w2,u2/2)), (2.3)

where the spatial and temporal frequencies art respectively given by k (k = (ky,/k)) and w.

A cascade of filters corresponds to applying, in sucession, a set of linear filters, to a collection of

signals [91, su,.h that the interval between their sucessive positions of highest magnitude is measured

by the offset. In the case of space-time filtering these offsets have a spatial as well as a temporal

part. Also, they can occur in a set of layers, where each layer corresponds to a different collection

of space-time offsets.

Let us define, analogously to Fleet and Jepson [91, the one-layer cascade by the expression

C(xy,t) = D(x,y,) * E(x,y,t), (2.4)

where

E(x,y,t) = (x, y) x y Yt+ r) + (x ,y- Y,- r) (2.5

.... ~ ~ 4 l - lrl
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6(-) is the Dirac delta (distibution), D(x,y,t) the space-time DOG as given by formula (2.2) and •

the convolution operation. In the frequency domain this cascade is given by

we( w) = b(k, w) (k, w) (2.6)
where

A(kw) = ! 4 ( CyP(i(k. + wt)) + eq-i(k* +w117)))
2 4

I1 o~. r (2.7)

and b(k w) is given by (2.3).

By increasing (decreasing) the offset values of, for example, the one-layer cascade we get more

(less) specificity to velocity. This can be observed by comparing Figures 1 and 2, or their respective

Fouriertransorm, Figures 3 and4. Wefix U, = 1.0, U, = 3.0, M, = 1.0, M, = 3.0, A, = 1.0 and

A, = 1.0.

For Figure I we have E = 0.77, 4y = 0 and r = 2.89, whereas for Figure 2, G = 0.52, 4y = 0

and r = 1.93, which correspond to a slope of 15 deg in the x-t plane (or 0.26 pixels per frame). If

we inspect Figures 3 and 4 it becomes clear that for larger offsets (Figure 3) we get more tuning to

velocity, although more ringing [9] (due to aliasing of adjacent patterns), for small velocities. A way

by which we get less ringing and more velocity specificity, as described by Fleet and Jepson [9], is

to build cascades out of more than one layer. For example, a two layered cascade is constructed by

convolving two one-layer cascades, each with a different collection of offset values, that is

C(x,y,t) = C1(x,y,t) * C2(x y,:), (2.8)

where

C(yx.y,t) D~xy,t) * E;(xy,t, (2.9)

C2 (x, y, t) = D(x, y,t) * E2(x, y,t), (2.10)
1 1 1 1 1 1

E y(x,y,) 6(x,y, t) + _(x+ 'Y+'tY +r) + 6(x- l,y-yt-r-), (2.11)

and

I 1+ 2 I
E2(x,y,r) = -(x,y,t) + (x+ 2,y+.Zt+r 2) + 1b(x- ,y-, t- r2 ) (2.12)
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For this two-layer cascade, Figure 5. and its Fourier transform Figure 6, we can observe (we

use the same space-time scale as for the one-layer cascade Figures) that them occurs much less

ringing (Figure 6) and its space-time shape exibits a broader (also narrower), support at the particular

orientation for which it is tuned.

In general, irrespective of the set of parameters that we choose for the filter, there always exits a

specific amount of directional uncertainty which is a consequence of the fact that the filter response is

not perfectly tuned to a particular orientation. This is a consequence of the fact that, in addition to the

response of the filter to the particular orientation for which is tuned, there exists a non-zero respense

to a restricted range of orientations in its neighborhood. For example, in the case of one-dimensional

motion (parallel to the x axis) of a given image pattern, in order to filter the specific direction (in the

X-i plane or, equivalently, in the fruquency domain) associated to its velocity, we should use a filter

which exibits its support at a given orientation and is zero otherwise. In practice, we will only be

able to select a given orientation inside a cone, such that its aperue is proportional to the motion

uncertainty. This is a consequence of the fact that any (real) filter will not only select the particular

direction for which it was designed. but also adjacent directions inside a fixed aperture. As a result

of this, there will always result a motion uncertainty, and consequently, this will affect (space-time)

the sampling properties of the filter. This issue will be discussed in detail in the next section.

The energy (power spectrum) associated to the one-layer cascade is given by

a jW W) 12

-L Ldw{b2 (j, W)[lI+ 2 COS(k.+ Wr ) +- COS( + wr)} (2.13)

Since we assume only wanslational motion, in which case it holds that

w = i- (2.14)

where is the velocity field, we can rewrite the previous energy expression in the following form

10 v C(k[k. +2

- Jl d II(kk [~ I exk +v-)+ex(-k (+ir
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+1[wT~.( + Vr)) + e*(-2d- )]} (2.15)
4

As a next step we want to develop the expression of the enrgy (2-15). by performing the integral

over . In this respect. it is useful to notice that formula (2.15) contains the following algebraic

expression

IEra,i9) f 9): dkD (kkJ)eW(i a + Vr)) + eW( - iak.+ Or)I ,(2.16)

where a can be any positive integer number. If we use the defiition of D(k w) and the constraint

(2.14), then

-Aetp(- k! (a2+ .. vjsI k + V;L) -2k. k v.v,,4

+A! Cxp(_ kj(a2 + v.2j4) 4(Cr' +. V,24) 2kkV.V3,,U

-2AA e (-k 4u2 + 0,2+ V.2(1,2 +e U,2) - 4Cr + a2+ VY ,2+ 2

x ew (- 2kxkvXV',(j4 + ,1). (2.1 7)

Now, by inserting (2.17) into expression (2.16). we get

( , r, a, V) =F 1 (a, , V, r) + F2 (a, , V, r) + F3(a, Z , r), (2.18)

where

F1 (a, A 2c= Af ci(ia +;- t(-ia +

x ep(- k.(a. + V4 - (0,2 + V,2) - 2k~k,v~v,g4) (2.19)

F2(a.,r) A2L dk{ [(iak(+ r)) + W( -iak ( + r))

x e -p(-k'ca2 + V.)- ;C2 + V)2,)U -2k) ,,,)}. (2.20)

and

F3(a, ,r) = -2AA, J d {[ex(iak.( + r)) + eip(-iak. + r))]

" -~( a2+ C2+ V2Al+ UI~) (a + 0, + V)I(IA2 +
2 2

" Xe(_2kyvy( A2 +~). (221
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Fnally, if we use the (gaussian) integral formula

L. dkeVM(. P) (:; ) + -I(k~k)A' A)

(4r etji1P-!wz, Z (2.22)

for an arbitrary (2 x 2) matrix A. then F, will be given by

2w~' _ ~~ (V.VY'U) 2 fjF1 (a,,) V= + v Cor + -

Xe( a a 2 + 'U 4 V.2 X a + A 2 V'2 (V.VYLL2)
2 V'

0-'1 ~ + 'U2V1 _V4U + VyT

x((& + v~r)(U, + vyr)) ( C )(2.23)

Analogously, F2 and F3 are given by a similar expression, if we substitute o,2. 2 by 0,2, 2 n

ol+ . JL2 + gA, reSpeCtively.

The complete expression for the energy is given by

2w 27r 2(7 + U2V.2G X a 2 v 2

+ Cj(- 1((~ 0, 22Xa + 'UVY) (V.VYU2) 2 1-

T2+ ju"V iiyi & .VUC + V, 7
X((& + vi)(4, + VY7)) + ,

+ !C(( ++ Y + vyr) (~~~)V

x((G + vi T)(C4 + i',1) + + .

+ CTW(- 4 .72 +AV2 (0, + Y - YU 2-
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x((& + vr)(v + vr)) +
x -. ,,(E c2 + + 4 ( + 4 )V2 f.

x((&41~~r)(44v~~r)) ( ~ +AV vVj ( EV + VyT1)

4 U.VzV, ) r'iv ~~ 4 7

+ ew(- [(u + @ + (1 + 1.4 xcT + 14 4 + (& + 2- (VV,(14 + 14))'V-

+ 4 +( A2 2))

_ + X,,(1  + ) +T + (142 +4 + ( 44)V) _ -(V.v(A + + ,,.X(G+vr ) (fy +14 v414(4 ))~

If we wa n to extr he optical fow field by using a s of energy filters, each tmed to a different

ouientation in space-tie, then we are confrnted with another source of motion uncertainty. This

comes from the fact that we have to determine the optical flow field, given the output of a number

of energy filters (with different orientations). For example, in Heeger's approach the estimated field

(vi, v,,) minimizes a coat fui~ on, which conis~ts in the sum of the differec between the meaue

(motion) energy and its predicted value, over all twelve filters. This means that there will always

esta non-zero contribution from filters which do not corresond to the right orientaion, due to an

overlap in the shape of neighboring filters. Uf'we wish to reduce the uncertainty in the motion estimate

I because of neighboring interacion unong filters, we have t enhance the orientation specificity of

each filter (thus leading to less lateral overlap). But this has the consequence that, for a fixed number

I of filters, some orientation (mainly corresponding to the orientations between that of neighboring

filters) will not be able to be selected any more. So we ar faced with a trade-off between being

]i able to select a specific orientation in space-time. with a minimum of uncertainty, anud the minimum

+- -- CW-- [ ,, , 2 + 0., ,2 + m d- , +a-- 'i' )V. X al+4+(& V, xI 1 --



3 SPACE-TIME SAMPLING 13

ntnibc..s of filters necessary to span all orientations.

The method of optical flow extraction used by Heeger [5), although it is able to determine the

optical flow for a collection of different types of moving patterms contains some limitations which

should be memtined, that is:

1. It assumes that all images can be modeled as (locally) random patterns

2. In order to be able to use Parseval's theorem, it is necessary to approximate the expression of

the energy

3. The optimization procedure, which has to be performed at each image pixel, is computationally

very expensive.

In particular, the issue of approximating the integral in Parseval's theorem, leads to errors in the

estimated value of the optical flow in regions where it is discontinuous, thus making it difficult to

use the estimated value as input for the operation of region segmentation. This and other questions

will be discussed in another paper [11].

3 Space-time sampling

In the previous section I discussed the question of extracting the optical flow by using space-time

filters, considered as energy filters. Also, I proposed the use of cascades of space-time filters like the

ones constructed by Fleet and Jepson as energy filters, which can be accomplished by substituting the

temporal exponential by a gaussian. A consequence of adopting a filtering approach to the extraction

of the optical flow is the fact that it is necessary to sample the filter, or more specifically, to perform

a space-time sampling of the filter. The temporal sampling issue is very clearly determined by the

fact that the temporal interval between sucessive images used in space-time filtering, although small.
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is finite. A question which is naturally raised in this context is in respect to how much can we

(temporally) undersample the filter, or in a more complete statement, the convolution of the image

sequence with the space-time filter, so that we are still able to reconstruct the origina signal For

unifonly translating pariens, the spatial and emporal sampling ratis are not indmplent, and, as

it is shown next, ifther exists a certain amount of motion uncertainty, then there exists a maximum

sampling interval, in either space or time, such that aliasing does not occu. This maximum sampling

interval is shown to be a (non-Unear) function of the motion uncertainty.

Initially, I will describe very sccintly, for one-dimensional functions, the sampling theorem and

generalize it to the-dimensions (two spatial and one temporal). Next. I show that for an uniformly

translating pattern it is only necessary to sample in either the spatial or temporal variables. FL-,ly,

I relate motion uncertainty with the maximum sampling interval such that there is no aliasing.

The sampling theorem [12] gives us a mathematical formulation for the reconstruction of a con-

tinuous functimon in terms of a collection of samples of this function, over a specific domain. If we

deal with real signals, on the other hand, ther is always a certain amount of under or oversampling

depending on the specific architecture of the filters being used. In particular, for the case of undersam-

pling (where the spatial or temporal sampling rate is larger than the one established by the sampling

theorem - the Nyquist rae), we have to deal with the aliasing problem. The degree of aliasing which

is permitted (so that it still is possible to reconstruct the original funcon. modulo small distortions)

depends not only on the filter characteristics but also on the type of data being filtered.

Let us start with one-dimensional signals. represented by the function f(x). We obtain a sample

of f(),f,(x)., by multiplying it by a (infinite) sum of (Dirac) delta distributions, such that the sample

points are equidistant (by p,). The sample fimction fA(x) is given by

fs W = f W)E (X, P.) ,(3.1I)

where

(XPZ) = (x - n.P). (3.2)
A = -O
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In the frequency domain. (3.1) is represented by the convolution

w(k) %(k) * %, , (3.3)

,2(%, 9=) 6 (k. - (3.4)

If we assume that %(k) is band-limited (f(k) is zero for 1k1 > L,), then it is easy to check

that, unless Pz 4 them will exist a region where the adjacent lobes overlap, which is a signal of

undersampling, and as a consequence of this we have the aliasing phenomenon. In order to avoid this

from happening, we multiply formula (3.3) by a function H(k,,), as for example the ideal low-pass

filter (which is I for Ik1 <4 L, ad 0 otherwise), as a result of which (3.3) reduces to I(k). This has

the consequence that f(x) can be exactly recovered from its samples. We can synthesize this result,

by stating that, if 1(k) is band-limited and has no singularities at its extremeties (k= ±L.), then

f(X) = n f(j)st(L.z(x - )), (3.5)

where

sinc(x) = _, (3.6)T X

which is a version of the sampling theorem [131.

We can generalize the sampling theorem to three-dimensional functions. So, given that f(x, y, t)

is a (space-time) function and (k, k,, w) its Fourier transform (k,, ky and w are the Fourier variables

associated to x, y and t), is zero for k1 1 > L., Ikyj > 4- and JwI > 4 and it does not have

singularities at Ik, =.4, fk j = /. and Iwi = 4, then, by the sampling theorem

AX, = , f(0 E",y, , -L)sinc(2L(x- )

x sinc(2L. (y - n J ) ) sine(2/., ( t - (3724 22t

The case of translational motion [14,151, in which case it holds that

(k,,k, w) = f(k.,, ( -w .v), (3.8)
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(which is equivalem to say that w is diffent from zer only on the plane deemined by -v), the

sampling theor rads

f(x - V-4y - v,) - , f(-! -, sspw*) (,x- (x vt -

x sin (y - Vy - -!-) ). (3.9)224

This means that we only need to sample f(x, y), at the Nyquist rate, in terms of its spatial variables.

Another way to understand this issue is given in terms of a fourier analysis, which, as a matter of

simplicity, we apply for the two-dimensional case (x-t space). We know that for pure translation,

because of formula (3.8), the sampled function J: (k, w) (analogously to (3.3)) is given by

Aj(kx,w) = l(kx)b(w - kxv.)

F, 246(k.-2n.4) 24 6 (w -2nL,4), (3.10)

which can be rewriten in the form

~(k., w) = I Jd4 dw' (g) (w' - v.)

x 2L6(k - - 2a x4)2/.6(w - w' -2n L). (3.11)

By using that

f dx6(x - a)6(x - b) = 6(a - b), (3.12)

in the integral over w', and

I dxf(x) (x - a)6(x - b) =f(a)6(a - b), (3.13)

in the 4 integral, we have that (3.11) results in

00 00

l,(kz, w) -I tf(k. - 2nLz)44L" E 6(w - kxv, - 2(nxv. - ntL,)).(3.14)

We can conclude that, if we start by assuming thaf(x- vzt) is sampled independently in its spatial

and temporal variables, then, due to the constraint of uniform translation, we are led to conclude that



3 SPACE-TIME SAMPLING 17

we only need to sample in the spatial (tmpoural) variable So, we can simplify equation (3.10) to the

following form

9 (k.,,w) -1(k.)6(w - ktv.) * [ U 26(k. - 2n.L..) (3.15)

or, by expanding the convolution we get

f(k.,w) - E I (k. - 2n.L.)2 L6(w - v.(k.- 2niL.)), (3.16)

which leads us to the two-dimensional version of equation (3.9). The expression (3.16) is identical to

the one discribing the Burr's experiment [15] which consists in sampling in space. at a fixed temporal

interval, a pattern wich moves a constant raze.

For illustration, if we consider a (space-time) bend-limited function which describes an uniformly

translational motion, then, by the constraint (3.8) its support (in frequency domain) is given by a line

segment, as it is shown in Figure 7. Its sampled version. satisfying equation (3.16) with M, = 2L.,

consists of a collection of replicas of the original line segment. which are uniformly sampled at

intervals of M. (see Figure 8).

From this we can deduce that. once the support of I(k,) is defined by the straight lines whose

slope is given by v1, its sampling rate is equal to the spatial sampling rate (or equivalently to the

temporal sampling). The function f(x, :) (which is identical to f(x + vt)) can be reconstructed from

f,(kx, w) by applying a filter which has a support parallel to the line w = 4v 1, and more than this,

as it is shown by Crick et at. (14], this support can be reduced to an infinitesimally narrow strip,

as long as there is no motion uncertainty. This means that, for the case of translational motion, we

can increase the sampling rate p, as much as we wish, given that we are able to exactly measure

the velocity v,. On the other hand, if we deal with real images, there is always a certain degree of

uncertainty in the motion measurement, so that the previous considerations do not hold. This leads

us to the issue of considering the sampling theorem in the presence of noisy data (thus generating

motion uncertainty). As a consequence of this, we have to know in what way the sampling theorem (as

previously described) has to be modified in order be able to deal with motion uncertainty. Specifically,

in the presence of motion uncertainty, it is no longer possible to arbitrarily increase the sampling



3 SPACE-TIME SAMPLING 18

imerval. widmut getting aliasing. This establishes a relationship between the maximum sampling

interval ('m space) (or minimal in the frequency domain) and motion uncertainty.

We know that under the conditions of translational motion (let consider only one-dimensional

motion), the Fourier transform of a space-time function has support at the lines passing through the

origin. and whose slope is proportional to the velocity of the moving patem. If we introduce a

specific degree of uncertainty for the velocity, then this support will be given by a (one-dimensional)

cone. whose aperture is proportional to the uncertainty in the velocity (See Figures 9 and 10).

Considering the ce of a band-limited function (with finite support in the frequency domain), we

cam use polar coordinates to describe its (two-dimensional) variables.

For the angular variable 9 we have 9 = arctanv. and the radial variable r is the maximum

of " +" The motion uncertainty dvx is given by Av. = (ta(9 +,4O) - tan), where 4

corresponds to the angular aperture of the cone, centered at 9. For small values of 49, 60, Av can

be approximated to bv, = =2 060.

If we sample f(x + v3t) along the x direction in intervals of p, (or M in the frequency domain)

(Figure 10). then it is easy to show that, for a fixed motion uncertainty, ther exists a minimum value

of M. M"', such that the adjacent patterns do not overlap.

If we decrease M beyond this threshold, abiasing occurs. This establishes a relationship between

M" " and dvx, as shown by the following theorem.

Theorem: If we have a band-limited function f(x, t) describing an uniformly translating

pattern, given that its velocity v2, which is assumed to be different from zero, is measured within

an uncertainty range of Avz, then there casts a mimumen value for the spatial frequency sampling

interval W. such that no aliasing occurs. M0 is related to Av, by

M.- = 2rsin(zdO/2)V/1 + tan=8tanG + tan(A/2)
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where

-v azzavv
40=atmv + - -)-ammta(Y - ,\

r = fm -1

tanG -- v1.

P of:

We can observe. from Figure 11 (or Figure 12), that there exists a point P, in the (r.0) plane.

where the adjacent patterns, corresponding to replicas of a (one-dimensional) cone, intersect without

overlapping. This point is the solution to the following equations

rcosOi = M + dcos9 2  (3.17)

and
rsinl = dsin92, 

(3.18)

where 01 = 0 - dO9/2 and 02 = 0 + 40/2.

By substituting d, given by (3.19), into (3.18) we get

lf- = rsin9j(cot61 - cotO2), (3.19)

or

= rsin(O - 48/2)[ - _ 1 ]. (3.20)tan(O - aO/2) tan(# + ,dO/2)

Expanding the sine and tangent in (3.21) we get the following expression

- r(sin~cosA9/2 - cos~sine/2)[ 1 + tankan,1O/2 I - tanktan,9/2 (tanO - tan4o/2 tan + tandO/2 (3.21)

which, after some algebra leads to

- 2rsin(A0/2)/1 + tan0 (3.22)
tan0 + tan(.A0/2)
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with A0 = e - 19t192 = arctan(v 1 + f)and 01 - arctan(1 1 - q&).

This concludes the proof.

The the0m shows us that the minimum interval, in the frequency domain, between adjacent

sampling points (on the k. axis) is bound, nonzineady, by the degree of motion uncertainty. Conse-

quently, the spatial sampling rate 0. cannot be arbitrarily inatased, but depends on the amount of

motion uncertainty. Since the spatial sampling rate p. is the inverse of M. (P. = s-). and M. is
bound, by motion uncertainty, to a minimum value M"', Px has a maximum value equal top ". If

P- > PZ, we have aliasing of adjacent patterns (cones).

4 Conclusion

The extraction of optic flow, via space-time filtering, is given in terms of a collection of filters which

are tuned to different orientations in space-time. The space-time Gabor and Cascades of the CS or

DOG filters are specially suited for this task because they constitute (space-time) oriented filters. I

show that it is possible, in particular, to use the cascaded filter approach of Fleet and Jepson [9] as an

energy filter, given that the exponential temporal part of the CS filter is substituted by a (temporal)

gaussian.

The space-time filtering approach to the extraction of optical flow is implemented on a sequence

of images which are closely displaced in time. The temporal interval between sucessive images in this

sequence corresponds to the (temporal) sampling rate, which as we saw before, is not independent of

the spatial sampling rate. In general, we want to use the sequence of images in such a way that we

am still able to extract the optical flow, but using the minimum number of images. This means that

we have to increase the temporal sampling ratio as much as possible, without getting any aliasing

effect. As a consequence of this, we have to ask ourselves what is the upper limit for the temporal
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(spatial) sampling rate such that:

1. We still are able to use a filtering approach to extract the optical flow

2. We do not get any lising effect.

As shown by the theorem of the previous section, for uniformly translating patterns, the maximum

spatial sampling interval is determined by the degree of motion uncertainty. The same can be shown

for the case of temporal sampling. If we sample at a lower rate than the minimum amount established

by the theorem of section 3. we get aliasing. This answers the second part of the question.

The firs part of the question is more difficult to be answered. Just as an illustration, we can

mention a problem which bears similarities to the use of a filtering or feature matching approaches to

the extraction of optical flow. It is the hypothesis of the existence of two. distinct, processes to detect

or extract optic flow in humans [18.19], called short and long range processes. They are studied, in

psychophysics. as a phenomenon of apparent motion, which is the capability of the human visual

system to be able to interpolate the (spatial) position of moving objects between discrete presentations

of sucessive mapshots of the motion. We can establish a general relationship between short-range

and the filtering approach to optical flow, and between long-range and the feature matching approach.

The short-range process operates in short temporal intervals (between sucessive frames - also called

inter-stimulus interval ISI. ranging from 50 and 100ms) and angular intervals of 15' or less. The

long-range process, an the other hand, can take place even for ISI as long as 400 ms [1], and it works

mainly through the matching of features (edges, blobs, etc.), thus operating through the identifcation

of elements in sucessive frames.

If short and long-range processes in humans are really independent and operate through different

mechanisms, it can point out to the possibility that if the filtering and feature matching approaches

shoud bear some resemblance with them, then there should exist a definite borderline between both

approaches. In this sense we can say that (space-time) aliasing is one criteria by which we can decide

upon this problem.
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Figure I One-layer cascade of space-time DOG filter with &=0.77, = 0. =2.89.



Figure 2 One-layer of a cascade of space-time DOG filter with 0.521 0. =1.93.



Figure 3 Fourier transform of the one-layer cascade of space-time DOG filter with F, = 0.77,

y = 0, r = 2.89.



Figure 4 Fourier transform of the one-layer cascade of space-time DOG filter with =0.52,

=0, r=1.93.



Figure S Two-layer cascade of space-time DOG filter with =0.52. = 0, rl = 1.93,

1.04, 2 = 0, r2 = 3.86.



Figure 6 Fourier transform of the one-layer cascade of space-time DOG filter with 0.52,

~ 0, r' = 1.93, 1.4 C2 = =0, r2 3.86.
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Figure 7 The support. in the frequency domain, for a pattern moving, in one dimension, at an

uniform rate. The slope of the segment (band-limited function) of the line is equal to the velocity of

the pattern, that is w =
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Figure 8 The sampled vesion of the sapport of an uniformly translating pattern. as represented
by Figure 7. 7he sampling interval is equal M1.
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Figure 9 The support, in the frequency domain, of an uniformly anlazing pattern whose velocity
is measured with a certain uncertainty. The aperture of this cone is equal to this uncertainty.



Figure 10 The sampled version of the support represented in Figure 9. The sampling interval

M, is such that the adjacent cones don't overlap.
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Figure 11 The sampled version of Figure 9 in tie case where die sampling ruze is such that
the adjacent cones touch each other. but without overlapping. The sampling tate M,, = Ar I is the
mininial one such that there doesn't occur aiiasinR.
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Figure 12 The diagram showing the relavarn parameters involved in the proof of the theoremn

of section 3.


